organic compounds

 $0.32 \times 0.23 \times 0.20 \text{ mm}$

15222 measured reflections

3622 independent reflections

1800 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.050$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4-Chlorophenyl)-2-(8-quinolyloxy)acetamide monohydrate

Yuan Wang,^a* Yan-Wei Li^a and Xiao-Xia Li^b

^aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China, and ^bInstitute of Functional Materials, Jiangxi University of Finance & Economics, Nanchang 330013, People's Republic of China Correspondence e-mail: wangyuan08@hpu.edu.cn

Received 29 June 2010; accepted 3 July 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.128; data-to-parameter ratio = 16.7.

In the title compound, $C_{17}H_{13}ClN_2O_2 \cdot H_2O$, the dihedral angle between the quinoline ring system and the benzene ring is 13.0 (1)°. An intramolecular N-H···O hydrogen bond may influence the molecular conformation. In the crystal structure, acetamide molecules are linked to water molecules *via* intermolecular O-H··· N and N-H···O hydrogen bonds and in turn linked into chains along [010] *via* O-H···O hydrogen bonds.

Related literature

For the synthesis of the title compound and its lanthanide complexes, see: Wu *et al.* (2008). For related structures, see: Zhang *et al.* (2006); Wu *et al.* (2010).

b = 5.2601 (6) Å

c = 29.851 (3) Å

V = 3061.7 (5) Å²

Z = 8

Experimental

Crystal data

erystat data
$C_{17}H_{13}CIN_2O_2 \cdot H_2O$
$M_r = 330.76$
Orthorhombic, Pbca
a = 19.4984 (19) Å

Mo K	α radiation
$\mu = 0.$	27 mm^{-1}

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.929, T_{max} = 0.948$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.128 & \text{independent and constrained} \\ S &= 1.00 & \text{refinement} \\ 3622 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.16 \text{ e } \text{ Å}^{-3} \\ 217 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.21 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1WA\cdots O1W^{i}$	0.85 (1)	2.06 (1)	2.9014 (16)	168 (2)
$O1W - H1WB \cdot \cdot \cdot N2$	0.85(1)	1.99(1)	2.830 (2)	170 (2)
$N1-H1A\cdots O2$	0.83 (1)	2.27 (2)	2.702 (2)	113 (2)
$N1 - H1A \cdots O1W$	0.83 (1)	2.40 (2)	3.088 (2)	140 (2)

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for financial support from the Doctoral Foundation of Henan Polytechnic University (B2009–70 648359).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5076).

References

- Bruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
- Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.
- Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, 03071–03072.

supplementary materials

Acta Cryst. (2010). E66, 01977 [doi:10.1107/S1600536810026206]

N-(4-Chlorophenyl)-2-(8-quinolyloxy)acetamide monohydrate

Y. Wang, Y.-W. Li and X.-X. Li

Comment

Amide type ligands have been extensively investigated due to their excellent coordination abilities (Wu *et al.*, 2008;2010). As part of our ongoing studies of amide type ligands, the title compound was synthesized and characterized by X-ray diffraction.

In the title compound, all the bond lengths are comparable with those observed in a similar compound (Zhang *et al.*, 2006). The dihedral angle between quinoline ring (N2/C9–C17, r.m.s. deviation 0.0129 Å) and benzene ring (C1–C6, r.m.s. deviation 0.0008 Å) is 13.0 (1)°. An intramolecular N-H···O hydrogen bond may influence the molecular conformation. In the crystal structure, *N*-(4-chlorophenyl)-2- (quinolin-8-yloxy)acetamide molecules are linked to water molecules *via* intermolecular O—H··· N and N—H···O hydrogen bonds and in turn linked into one-dimensional chains along [010] via O-H···O hydrogen bonds. Additional stabilization is provided by weak π ··· π stacking interactions involving the benzene ring and pyridine rings of symmetry related quinoline groups with a centroid to centroid distance of 3.8607 (14) Å.

Experimental

The title compound was prepared according to the literature, Wu *et al.* (2008). Colorless block crystals were obtained by slow evaporation of a *N*,*N*-dimethylformamide solution of the title compound.

Refinement

The N—H and water H-atoms were located in a difference Fourier map and refined with an N—H distance restraint of 0.83 (1)Å and an O—H distance restraint of 0.85 (1)Å. H atoms attached to C atoms were placed in calculated positions and treated using a riding-model approximation (C—H = 0.93; $U_{iso}(H)=1.2U_{eq}(C)$).

Figures

Fig. 1. The molecular structure shown with 50% probability displacement ellipsoids.

Fig. 2. Part of the crystal structure viewed approximately along the b axis with hydrogen bonds shown as dashed lines.

N-(4-Chlorophenyl)-2-(8-quinolyloxy)acetamide monohydrate

F(000) = 1376

 $\theta = 2.5 - 19.9^{\circ}$

 $\mu = 0.27 \text{ mm}^{-1}$

Block, colorless

 $0.32\times0.23\times0.20~mm$

T = 296 K

 $D_{\rm x} = 1.435 \ {\rm Mg \ m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1957 reflections

Crystal data

 $C_{17}H_{13}CIN_2O_2 \cdot H_2O$ $M_r = 330.76$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 19.4984 (19) Å b = 5.2601 (6) Å c = 29.851 (3) Å V = 3061.7 (5) Å³ Z = 8

Data collection

Bruker SMART CCD diffractometer	3622 independent reflections
Radiation source: sealed tube	1800 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.050$
ϕ and ω scans	$\theta_{\text{max}} = 28.1^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 25$
$T_{\min} = 0.929, T_{\max} = 0.948$	$k = -6 \rightarrow 4$
15222 measured reflections	<i>l</i> = −39→39

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.128$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0548P)^2 + 0.0231P]$ where $P = (F_0^2 + 2F_c^2)/3$
3622 reflections	$(\Delta/\sigma)_{max} < 0.001$
217 parameters	$\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.32260 (4)	0.36909 (15)	0.044180 (19)	0.0858 (3)
O2	0.40858 (7)	0.1726 (3)	0.32297 (4)	0.0532 (4)
N2	0.34502 (9)	0.5390 (3)	0.36817 (6)	0.0505 (5)
N1	0.38877 (10)	0.1567 (3)	0.23341 (6)	0.0524 (5)
C10	0.47572 (12)	0.0589 (4)	0.38814 (7)	0.0568 (6)
H10	0.4991	-0.0675	0.3726	0.068*
C17	0.39211 (11)	0.3959 (4)	0.39023 (6)	0.0454 (5)
C13	0.40699 (12)	0.4337 (4)	0.43606 (7)	0.0522 (6)
C7	0.42016 (11)	-0.0454 (4)	0.25142 (7)	0.0506 (6)
C9	0.42715 (11)	0.2012 (4)	0.36669 (6)	0.0470 (5)
C11	0.49027 (12)	0.1029 (5)	0.43328 (8)	0.0647 (7)
H11	0.5238	0.0060	0.4474	0.078*
C12	0.45676 (13)	0.2827 (4)	0.45688 (7)	0.0618 (7)
H12	0.4667	0.3065	0.4871	0.074*
C14	0.37041 (14)	0.6238 (5)	0.45851 (7)	0.0650 (7)
H14	0.3782	0.6522	0.4888	0.078*
01	0.43645 (9)	-0.2349 (3)	0.23095 (5)	0.0771 (5)
C1	0.34138 (12)	0.3011 (5)	0.09954 (7)	0.0564 (6)
C8	0.43823 (12)	-0.0380 (4)	0.30005 (7)	0.0529 (6)
H8A	0.4228	-0.1942	0.3141	0.063*
H8B	0.4877	-0.0298	0.3030	0.063*
C4	0.37288 (11)	0.1944 (4)	0.18780 (7)	0.0480 (5)
C3	0.33244 (12)	0.3998 (4)	0.17682 (7)	0.0569 (6)
Н3	0.3155	0.5039	0.1995	0.068*
C2	0.31662 (12)	0.4537 (5)	0.13280 (7)	0.0612 (6)
H2	0.2893	0.5930	0.1258	0.073*
C16	0.31355 (12)	0.7171 (5)	0.39060 (7)	0.0619 (6)
H16	0.2822	0.8181	0.3753	0.074*
C6	0.38144 (13)	0.0964 (5)	0.10979 (7)	0.0649 (7)
H6	0.3982	-0.0070	0.0870	0.078*
C5	0.39718 (13)	0.0424 (4)	0.15377 (7)	0.0629 (7)
Н5	0.4244	-0.0977	0.1605	0.075*
C15	0.32395 (14)	0.7662 (5)	0.43632 (8)	0.0681 (7)
H15	0.2995	0.8934	0.4509	0.082*
O1W	0.28141 (9)	0.4811 (3)	0.28357 (5)	0.0696 (5)
H1A	0.3792 (14)	0.272 (4)	0.2514 (7)	0.104*
H1WA	0.2599 (13)	0.621 (3)	0.2800 (7)	0.104*
H1WB	0.3043 (12)	0.488 (5)	0.3078 (6)	0.104*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0970 (6)	0.1067 (6)	0.0538 (4)	-0.0048 (5)	-0.0072 (3)	0.0087 (4)
02	0.0583 (10)	0.0571 (10)	0.0443 (8)	0.0109 (8)	-0.0004 (7)	-0.0023 (7)
N2	0.0479 (11)	0.0527 (11)	0.0509 (10)	0.0024 (10)	0.0006 (9)	-0.0023 (9)
N1	0.0637 (13)	0.0479 (12)	0.0455 (11)	0.0084 (10)	0.0035 (9)	-0.0050 (9)
C10	0.0559 (15)	0.0596 (15)	0.0548 (13)	0.0078 (13)	0.0008 (11)	0.0075 (11)
C17	0.0428 (13)	0.0474 (13)	0.0460 (12)	-0.0093 (11)	0.0013 (10)	0.0031 (10)
C13	0.0564 (16)	0.0522 (14)	0.0479 (13)	-0.0131 (12)	0.0007 (11)	0.0020 (11)
C7	0.0553 (15)	0.0433 (13)	0.0533 (13)	-0.0019 (12)	0.0051 (11)	-0.0029 (11)
C9	0.0467 (13)	0.0514 (14)	0.0431 (11)	-0.0045 (11)	0.0017 (10)	0.0048 (10)
C11	0.0607 (17)	0.0717 (17)	0.0618 (15)	0.0002 (14)	-0.0119 (13)	0.0128 (13)
C12	0.0712 (18)	0.0652 (17)	0.0490 (13)	-0.0091 (14)	-0.0092 (13)	0.0060 (12)
C14	0.080(2)	0.0656 (17)	0.0492 (14)	-0.0122 (15)	0.0029 (13)	-0.0056 (12)
01	0.1077 (15)	0.0544 (11)	0.0691 (10)	0.0222 (10)	-0.0111 (10)	-0.0142 (9)
C1	0.0581 (16)	0.0621 (16)	0.0490 (13)	-0.0105 (13)	0.0011 (11)	0.0007 (12)
C8	0.0611 (16)	0.0450 (13)	0.0525 (13)	0.0043 (12)	0.0072 (11)	0.0048 (11)
C4	0.0503 (15)	0.0452 (12)	0.0485 (12)	-0.0055 (11)	0.0031 (11)	-0.0035 (10)
C3	0.0629 (16)	0.0520 (14)	0.0558 (14)	0.0068 (13)	-0.0027 (12)	-0.0110 (11)
C2	0.0615 (15)	0.0600 (15)	0.0621 (15)	0.0043 (13)	-0.0094 (13)	-0.0010 (12)
C16	0.0584 (16)	0.0599 (15)	0.0673 (15)	0.0036 (13)	-0.0009 (13)	-0.0050 (13)
C6	0.0829 (19)	0.0631 (16)	0.0486 (14)	0.0028 (15)	0.0136 (13)	-0.0053 (12)
C5	0.0821 (18)	0.0527 (14)	0.0539 (14)	0.0125 (13)	0.0141 (13)	-0.0024 (11)
C15	0.0737 (19)	0.0673 (17)	0.0634 (16)	-0.0007 (15)	0.0090 (14)	-0.0175 (14)
O1W	0.0808 (14)	0.0720 (13)	0.0560 (10)	0.0091 (10)	-0.0059 (9)	-0.0056 (9)

Geometric parameters (Å, °)

Cl1—C1	1.730 (2)	C14—C15	1.349 (3)
O2—C9	1.363 (2)	C14—H14	0.9300
O2—C8	1.425 (2)	C1—C6	1.365 (3)
N2-C16	1.305 (3)	C1—C2	1.365 (3)
N2—C17	1.358 (2)	C8—H8A	0.9700
N1—C7	1.339 (3)	C8—H8B	0.9700
N1—C4	1.411 (3)	C4—C5	1.377 (3)
N1—H1A	0.832 (10)	C4—C3	1.377 (3)
С10—С9	1.366 (3)	C3—C2	1.379 (3)
C10-C11	1.396 (3)	С3—Н3	0.9300
С10—Н10	0.9300	C2—H2	0.9300
C17—C13	1.412 (3)	C16—C15	1.404 (3)
С17—С9	1.417 (3)	C16—H16	0.9300
C13—C12	1.400 (3)	C6—C5	1.378 (3)
C13—C14	1.399 (3)	С6—Н6	0.9300
C7—O1	1.212 (2)	С5—Н5	0.9300
С7—С8	1.494 (3)	C15—H15	0.9300
C11—C12	1.348 (3)	O1W—H1WA	0.854 (9)
C11—H11	0.9300	O1W—H1WB	0.851 (9)

C9—O2—C8 115.98 (C16—N2—C17 117.87 (C7—N1—C4 126.84 (C7—N1—H1A 115.0 (1	16) C6—C1—Cl1 19) C2—C1—Cl1	119.91 (18) 119.9 (2)
C16—N2—C17 117.87 (C7—N1—C4 126.84 (C7—N1—H1A 115.0 (1	19) C2—C1—Cl1	119.9 (2)
C7—N1—C4 126.84 (C7—N1—H1A 115.0 (1		· · · ·
C7—N1—H1A 115.0 (1	18) O2—C8—C7	113.02 (17)
	O) O2—C8—H8A	109.0
C4—N1—H1A 118.2 (1	Э) C7—C8—H8A	109.0
C9—C10—C11 120.1 (2	O2—C8—H8B	109.0
С9—С10—Н10 119.9	С7—С8—Н8В	109.0
С11—С10—Н10 119.9	H8A—C8—H8B	107.8
N2—C17—C13 122.04 (19) C5—C4—C3	118.5 (2)
N2—C17—C9 119.08 (18) C5—C4—N1	123.7 (2)
С13—С17—С9 118.88 (19) C3—C4—N1	117.76 (19)
C12—C13—C14 123.1 (2	C4—C3—C2	121.1 (2)
C12—C13—C17 119.5 (2	С4—С3—Н3	119.5
C14—C13—C17 117.4 (2	С2—С3—Н3	119.5
O1—C7—N1 124.8 (2	C1—C2—C3	119.6 (2)
01—C7—C8 116.7 (2	C1—C2—H2	120.2
N1—C7—C8 118.50 (19) C3—C2—H2	120.2
O2—C9—C10 124.9 (2	N2—C16—C15	124.3 (2)
O2—C9—C17 115.25 (18) N2—C16—H16	117.9
C10—C9—C17 119.84 (19) C15—C16—H16	117.9
C12—C11—C10 121.5 (2	C1—C6—C5	120.3 (2)
C12—C11—H11 119.3	C1—C6—H6	119.9
С10—С11—Н11 119.3	С5—С6—Н6	119.9
C11—C12—C13 120.1 (2	C4—C5—C6	120.4 (2)
С11—С12—Н12 119.9	С4—С5—Н5	119.8
С13—С12—Н12 119.9	С6—С5—Н5	119.8
C15—C14—C13 120.3 (2) C14—C15—C16	118.2 (2)
C15—C14—H14 119.9	C14C15H15	120.9
C13—C14—H14 119.9	C16—C15—H15	120.9
C6—C1—C2 120.2 (2	H1WA—O1W—H1WB	109.2 (15)
C16—N2—C17—C13 0.5 (3)	C12—C13—C14—C15	178.8 (2)
C16—N2—C17—C9 -179.92	(19) C17—C13—C14—C15	-1.2 (3)
N2—C17—C13—C12 -179.1 (2) C9—O2—C8—C7	-175.30 (17)
C9—C17—C13—C12 1.3 (3)	O1—C7—C8—O2	-171.25 (19)
N2—C17—C13—C14 0.9 (3)	N1—C7—C8—O2	10.0 (3)
C9—C17—C13—C14 –178.67	(19) C7—N1—C4—C5	-10.4 (4)
C4—N1—C7—O1 -4.3 (4)	C7—N1—C4—C3	171.6 (2)
C4—N1—C7—C8 174.31 (19) C5—C4—C3—C2	-0.2 (3)
C8—O2—C9—C10 6.1 (3)	N1—C4—C3—C2	177.9 (2)
C8—O2—C9—C17 -174.00	(17) C6—C1—C2—C3	0.1 (3)
С11—С10—С9—О2 –179.4 (2) Cl1—C1—C2—C3	-179.29 (18)
C11—C10—C9—C17 0.8 (3)	C4—C3—C2—C1	0.0 (3)
N2—C17—C9—O2 -1.3 (3)	C17—N2—C16—C15	-1.7 (3)
C13—C17—C9—O2 178.33 (18) C2—C1—C6—C5	0.0 (4)
N2—C17—C9—C10 178.64 (19) Cl1—C1—C6—C5	179.38 (19)
C_{13} C_{17} C_{9} C_{10} $-1.8 (3)$	C3—C4—C5—C6	0.3 (3)
1.0(3)		

supplementary materials

C10—C11—C12—C13 C14—C13—C12—C11 C17—C13—C12—C11	-1.2 (4) -179.9 (2) 0.1 (3)		C1—C6—C5—C4 C13—C14—C15—C16 N2—C16—C15—C14		-0.2 (4) 0.2 (4) 1.3 (4)
Hydrogen-bond geometry (Å, °)					
D—H···A	Ĩ	D—H	H···A	$D \cdots A$	D—H··· A
O1W—H1WA…O1W ⁱ	(0.85 (1)	2.06 (1)	2.9014 (16)	168 (2)
N1—H1A···O2	(0.83 (1)	2.27 (2)	2.702 (2)	113 (2)
N1—H1A…O1W	(0.83 (1)	2.40 (2)	3.088 (2)	140 (2)
O1W—H1WB…N2	(0.85 (1)	1.99 (1)	2.830 (2)	170 (2)
Symmetry codes: (i) $-x+1/2$, $y+1/2$, z.					

